home   |   А-Я   |   A-Z   |   меню


Научное познание мира никогда не будет иметь пределов

Мартин Риз

Бывший президент Королевского общества, почетный профессор космологии и астрофизики Кембриджского университета, преподаватель Тринити-колледжа. Автор книги From Here to Infinity («Отсюда к бесконечности»).

Есть широко распространенное мнение, что наше проникновение в глубь вещей будет продолжаться бесконечно – так что в конечном счете все научные проблемы будут полностью исследованы. Но, возможно, нам следует отказаться от этого оптимизма. Человеческий интеллект может наткнуться на барьеры – пусть даже в большинстве научных областей до этого еще далеко.

Есть очевидно незавершенное дело в космологии. Теория Эйнштейна рассматривает пространство и время как связные и непрерывные. Однако мы знаем, что никакую материю нельзя произвольно порубить на сколь угодно мелкие кусочки – в конце концов вы упретесь в отдельные атомы. Схожим образом и само пространство имеет гранулированную и квантифицированную структуру, только в масштабе в триллион триллионов раз меньше. Нам недостает единого понимания основ физического мира.

Такая теория ввела бы Большие взрывы и мультивселенные в сферу компетенции строгой науки. Но она не послужила бы сигналом к тому, что время открытий прошло. На самом деле эта теория никак не касалась бы 99 % ученых, которые не являются ни специалистами по физике частиц, ни космологами. Например, наши знания о питании и уходе за детьми столь поверхностны, что советы экспертов меняются каждый год. Это довольно нелепо контрастирует с той уверенностью, с которой мы обсуждаем галактики и субатомные частицы. Но биологов сдерживают проблемы сложности – и эти проблемы ошеломляют гораздо сильнее, чем аналогичные проблемы в очень большом и очень малом масштабе.

Иерархию наук иногда сравнивают с высоким зданием: физика частиц располагается на первом этаже, выше – остальная физика, потом химия и так далее вверх, вплоть до психологии (а экономисты живут в пентхаусе). С этим корреспондирует иерархия сложности: от атомов к молекулам, клеткам, организмам и так далее. Эта метафора в известном смысле полезна: она показывает, как устроена каждая наука вне зависимости от других. Но в одном ключевом аспекте эта аналогия слаба. В любой постройке слабый фундамент ставит под угрозу верхние этажи. Однако в нашей аналогии «науки верхних уровней», имеющие дело со сложными системами, не зависят от прочности основания.

У каждой науки есть собственные, отличные от других понятия и объяснения. Даже если бы у нас был гиперкомпьютер, способный решить уравнение Шрёдингера для квадриллионов атомов, результат не принес бы такого понимания, которого добиваются ученые.

Это верно не только для тех наук, которые имеют дело с действительно сложными вещами – особенно с живыми, – но даже и с более прозаическими явлениями. Например, математиков, пытающихся понять, почему капает кран или обрушивается волна, не интересует тот факт, что по своему химическому составу вода – это H2O. Они рассматривают жидкость как континуум. Они используют новые, «эмерджентные» концепции, такие как вязкость и турбулентность.

Почти все ученые – редукционисты, поскольку думают, что все явления, какими бы сложными они ни были, подчиняются главным физическим уравнениям. Но даже если бы гиперкомпьютер смог решить уравнение Шрёдингера для колоссального объема атомов, из которых состоит (скажем) прибой, стая перелетных птиц или тропический лес, объяснение на атомном уровне не дало бы нам того знания, которого мы на самом деле добиваемся. Мозг – это скопление клеток, а живописное полотно – скопление химических пигментов. Но что интересно в обоих случаях, так это паттерны и структуры, то есть возникающая сложность.

Мы, люди, не очень изменились с тех пор, когда наши далекие предки бродили по африканской саванне. Наш мозг развивался для того, чтобы мы могли управляться с окружающей человека средой, масштаб которой таков же, как и наш. Так что это и в самом деле замечательно, что мы можем разбираться в вещах, которые недоступны для нашей повседневной интуиции, в частности в крошечных атомах, из которых мы сделаны, и громадном космосе, который нас окружает. Тем не менее – даю голову на отсечение – некоторые аспекты реальности объективно находятся вне возможностей нашего познания, и для их понимания требуется некий постчеловеческий интеллект – точно так же как евклидова геометрия недоступна низшим приматам.

Кто-то может оспорить это заявление, указав, что для вычислений не может быть никаких пределов. Но исчисляемое не значит концептуально постижимое. Вот простой пример: любой человек, владеющий декартовой геометрией, легко может мысленно представить себе простую форму – линию или круг, – если увидит ее уравнение. Но никто, имея (кажущийся простым) алгоритм для рисования множества Мандельброта, не сможет визуально представить его поразительные хитросплетения – хотя для компьютера рисование модели является весьма скромной задачей.

Было бы неоправданным антропоцентризмом верить в то, что вся наука (и точное понимание всех аспектов реальности) находится в пределах досягаемости человеческого ума. Будут ли действительно долговременные планы на будущее реализованы живыми постчеловеческими существами или разумными машинами – это предмет для дискуссий, но в любом случае на их долю останется немало открытий, которые сегодня недоступны для нас.



Простые ответы Гэвин Шмидт | Эта идея должна умереть. Научные теории, которые блокируют прогресс | Жизнь развивается через общий генетический набор Сейриан Самнер



Loading...