home   |   А-Я   |   A-Z   |   меню


Ускорители — фабрики энергии

Производство энергии в мире за последние десятилетия возрастало в среднем на пять процентов в год. Если этот темп сохранится, то энергетические потребности человечества во второй половине следующего века в пятьдесят — сто раз превзойдут современный уровень. В то же время запасы наиболее энергоемких и удобных для использования видов органического топлива, нефти и газа, в основном будут исчерпаны уже в сравнительно недалеком будущем. Лучше обстоит дело с каменным углем. При современных темпах развития экономики его хватит по крайней мере на несколько сотен лет. Но в этом случае придется сжечь значительную часть атмосферного кислорода. Экологические последствия будут, по-видимому, катастрофическими. Конечно, есть еще солнечные батареи, ветряные двигатели, энергия, запасенная в земной коре, в морях и океанах. Все это — важное подспорье, но полностью удовлетворить потребности экономики таким путем нельзя.

Единственный выход — использование энергии атома. Атомные электростанции уже сегодня дают весьма заметный вклад в производство электроэнергии. В некоторых странах — например, во Франции и ФРГ, где мало нефти и угля, — он приближается к 50 — 70 процентам. Предполагается, что к концу столетия мощность атомной энергетики в мире возрастет по крайней мере втрое.

Радикальным решением энергетической проблемы, освобождающим нашу планету от забот об источниках энергии по крайней мере на ближайшую тысячу лет, был бы переход к «термояду» — использованию энергии термоядерного синтеза. В воде морей и океанов содержатся практически неограниченные запасы необходимого для этого сырья — атомов тяжелого водорода — дейтерия. Однако перед физиками здесь стоят еще чрезвычайно трудные научно-технические задачи, и пройдет очень много времени, прежде чем будут созданы экономически выгодные термоядерные реакторы.

Сегодня атомную энергию получают с помощью реакции деления ядер урана. Именно эта реакция «работает» на атомных электростанциях, приводит в движение подводные лодки и ледоколы. Запасы ядерного горючего, урана, на нашей планете хотя и не столь велики, как запасы тяжелого водорода, тем не менее вполне достаточны для того, чтобы в течение столетий служить надежной основой земной энергетики. Но вот что плохо: топливом для современных атомных реакторов может служить не весь уран, а только весьма редкая его разновидность — изотоп с атомным весом 235, доля которого в природном уране составляет менее процента. Остальная часть урана — а это ни много ни мало более девяноста девяти процентов всей его добычи! — идет пока на склады и сохраняется до лучших времен, когда будут созданы реакторы, способные использовать весь уран, оба его изотопа 235 и 238, которых много. В опытном порядке подобные системы уже действуют в нашей стране и за рубежом. Они 'перерабатывают уран в новый элемент — плутоний, который, как и уран 235, является хорошим топливом для «атомных печей». К сожалению, переработка в плутоний происходит пока еще довольно медленно и обходится дорого.

Вселенная в электроне

Есть еще один путь для переработки неиспользуемого урана 238 в плутоний — с помощью установки, которая является гибридом мощного ускорителя частиц и уранового реактора. Представьте себе большой кусок урана, скажем, кубический метр в объеме, — мишень, в которую бьет пучок протонов, ускоренных до высоких энергий. Сталкиваясь с ядрами, энергичные протоны дробят их на множество протонов и нейтронов — расшибают в веер нуклонных «брызг». Родившиеся при этом частицы дробят следующие ядра и так далее, до тех пор, пока их энергия не станет такой маленькой, что они уже будут не способны расколоть атомное ядро. В урановой мишени образуется мощный каскад, лавина постепенно замедляющихся частиц. Как в горах, когда сорвавшийся камень сбивает несколько следующих, те сбивают другие — и грохочущий веер камней летит вниз!

Часть образовавшихся в каскаде и постепенно замедлившихся нейтронов захватывается ядрами урана, и в результате образуется плутоний. Другие нейтроны делят ядра урана, как в обычном атомном реакторе. При этом в мишени выделяется так много энергии, что ее достаточно для того, чтобы возместить затраты электростанции на ускорение протонов, а образовавшийся плутоний можно «сжечь» с выделением большого количества энергии либо в самой мишени, либо в других атомных реакторах.

Это так называемый электроядерный метод получения атомной энергии, или, как говорят физики, «электрояд». Ускоритель становится фабрикой энергии. Скорость наработки плутония здесь во много раз больше, чем в реакторах деления, работающих без «подсветки» пучком ускорителя.

История науки убедительно говорит о том, что исследования фундаментальных явлений природы никогда не бывают напрасными, хотя на первых порах иногда и кажутся не имеющими никакого отношения к практике. С течением времени они обязательно дают выход в жизнь, сторицей окупая все затраты. Такой процесс «отдачи» уже начался в физике высоких энергий. Правда, как это всегда бывает, для того, чтобы от физических моделей перейти к мощным и надежно работающим промышленным установкам, требуется определенное время, когда главными фигурами становятся инженер и конструктор. Обычные ускорители, используемые сегодня для экспериментов с элементарными частицами, для «электрояда» не годятся. Здесь нужны так называемые сильноточные ускорители, которые могут за раз ускорять по меньшей мере в десять или даже в сто тысяч раз большее число частиц, чем, например, ускорители, работающие в подмосковном городке физиков Дубне. Различные типы сильноточных ускорителей проектируются и уже строятся во многих странах мира, в том числе и в нашей.

Некоторые ученые считают, что в будущем электроядерные установки с сильноточными ускорителями будут размещаться где-нибудь в космосе или на Луне, где высокий вакуум, не требуется специального охлаждения для сверхпроводников, а главное, не нужно заботиться о защите от мощного и опасного для людей радиоактивного излучения, испускаемого ускорителем и урановой мишенью. Там же можно хранить и радиоактивные отходы производства, которые представляют большую опасность для окружающей среды.

И вот тут мы встречаемся еще с одной очень важной проблемой современной науки — с опасностью, которой чреваты научные изыскания.


Золушка или принцесса? | Вселенная в электроне | Опасна ли «чистая наука»?



Loading...